Bone Tissue Engineering
We develop in silico multiscale models to simulate and explore the complex processes that occur during bone healing, providing insights into how these processes can be optimized and stimulated with bone tissue engineering therapies (e.g. using calcium phosphates and bioprinting techniques).
Publications
Carlier, A., Vasilevich, A., Marechal, M., de Boer, J., Geris, L. (2018) In silico clinical trials for pediatric orphan diseases. Scientific Reports, 6;8(1):2465, doi:10.1038/s41598-018-20737-y
Carlier, A., van Gastel, N., Geris, L., Carmeliet, G., Van Oosterwyck, H. (2014). Size does matter: an integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Comput Biol, 10(11), e1003888, https://doi.org/10.1371/journal.pcbi.1003888
Carlier, A., Geris, L., van Gastel, N., Carmeliet, G., Van Oosterwyck, H. (2014). Oxygen as a critical determinant of bone fracture healing – a multiscale model. J Theor Biol, 365, 247-264, doi: 10.1016/j.jtbi.2014.10.012
Carlier, A., Chai, Y., Moesen, M., Theys, T., Schrooten, J., Van Oosterwyck, H., Geris, L. (2011). Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomaterialia, 7, 3573-3585, https://doi.org/10.1016/j.actbio.2011.06.021
Carlier, A., Akdeniz Skvortsov, G., Hafezi, F., Ferraris, E., Patterson, J., Koc, B., Van Oosterwyck, H. (2016) Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication, 8:2, http://dx.doi.org/10.1088/1758-5090/8/2/025009